- PII
- S30345170S0004629925030079-1
- DOI
- 10.7868/S3034517025030079
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 102 / Issue number 3
- Pages
- 213-228
- Abstract
- In this paper, the theoretical and observational problems of the search for cosmic strings (CS) by methods of modern astrophysics are discussed, and new possibilities for further observational search for CS are proposed and justified. In recent works by the authors, it was shown for the first time that taking into account the geometry of the CS (tilt and bend) cardinally affects one of the main observational methods of searching for CS: searching for chains of images of galaxies that should be formed due to the effect of gravitational lensing of background galaxies on the CS. Further, these theoretical developments were applied to the analysis of observational data of the double galaxy SDSS J110429.61+233150.3, previously found in the field of the assumed CS (CSc-1), identified, in turn, by the analysis of the CMB anisotropy. Based on these long-term studies, this paper for the first time identifies the fundamental problems of approximate theoretical models, within which the evolution of both CS networks and single CS is traditionally considered, and also for the first time justifies the rejection of the traditional search for extended chains of gravitational-lens pairs. In this paper, a new detailed strategy for searching for CS is proposed by identifying and analyzing the characteristic clustering of gravitational-lens pairs. The strategy is proposed using the example of the analysis of gravitational-lens pairs in the CSc-1 region, and the requirements for future observations are indicated. Arguments are also given that allow for a change in the linear density of CS in a wide range, arguments are given that “heavy” CS do not contradict modern observational data, including on the CMB anisotropy and the gravitational-wave background. A strategy for the systematic analysis of binary quasars (having a gravitationally lensed nature and an unidentified lens object) as lensed on CS is discussed.
- Keywords
- космология космические струны гравитационное линзирование
- Date of publication
- 14.10.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 54
References
- 1. T.W.B. Kibble, J. Physics A: Mathematical and General 9(8), 1387 (1976).
- 2. D.D. Sokolov and A.A. Starobinsky, Soviet Physics Doklady 22 312 (1977).
- 3. M.B. Hindmarsh and T.W.B. Kibble, Reports Progress Phys. 58(5), 477 (1995), arXiv:hepph/9411342.
- 4. Ya.B. Zeldovich, Monthly Not. Roy. Astron. Soc. 192, 663 (1980).
- 5. A. Vilenkin, Phys. Rev. D 23(4), 852 (1981).
- 6. A. Vilenkin, Astrophys. J. Letter 282, L51 (1984).
- 7. J.-P. Uzan and F. Bernardeau, Phys. Rev. D 63(2), id. 023004 (2000).
- 8. A.A. de Laix and T. Vachaspati, Phys. Rev. D 54(8), 4780 (1996).
- 9. D.P. Bennett and F.R. Bouchet, Phys. Rev. D 41(8), 2408 (1990).
- 10. B. Allen and E.P.S. Shellard, Phys. Rev. Letters 64(2), 119 (1990).
- 11. C.J.A.P. Martins and E.P.S. Shellard, Phys. Rev. D 73(4), id. 043515 (2005), arXiv:astro-ph/0511792.
- 12. C. Ringeval, M. Sakellariadou, and F.R. Bouchet, J. Cosmology and Astroparticle Phys. 0702, id. 023 (2007), arXiv:astro-ph/0511646.
- 13. A. Zakharov, General Relativ. and Gravit. 42(9), 2301 (2010).
- 14. D.A. Kirzhnits and A.D. Linde, Phys. Letters B 42(4), 471 (1972).
- 15. I.Yu. Kobsarev, L.B. Okun, and Ya. B. Zeldovich, Phys. Letters B 50(3), 340 (1974).
- 16. T.W.B. Kibble, J. Physics A: Mathematical and General 9(3), 1387 (1976).
- 17. E. Witten, Phys. Letters B 153(4–5), 243 (1985).
- 18. J. Polchinski, in The New Cosmology: Conference on Strings and Cosmology; AIP Conf. Proc. 743, 331 (2004), arXiv:hep-th/0410082.
- 19. M. Sakellariadou, Nuclear Phys. B Proc. Suppl. 192, 68 (2009), arXiv:0902.0569 [hep-th].
- 20. E.J. Copeland and T.W.B. Kibble, Proc. Royal Soc. A: Math., Phys. and Engineering Sci. 466(2115), 623 (2010), arXiv:0911.1345 [hep-th].
- 21. M.R. Anderson, The Mathematical Theory of Cosmic Strings. Cosmic Strings in the Wire Approximation (Boca Raton: Taylor and Francis, 2002).
- 22. B. Paczyński, Nature 319(6054), 567 (1986).
- 23. Q. Shafi and A. Vilenkin, Phys. Rev. D 29(8), 1870 (1984), https://link.aps.org/doi/10.1103/PhysRevD.29.1870
- 24. E.T. Vishniac, K.A. Olive, and D. Seckel, Nuclear Phys. B 289, 717 (1987).
- 25. L.A. Kofman and A.D. Linde, Nuclear Phys. B 282, 555 (1987).
- 26. J. Yokoyama, Phys. Rev. Letters 63(7), 712 (1989).
- 27. K. Freese, T. Gherghetta, and H. Umeda, Phys. Rev. D 54(10), 6083 (1996), arXiv:hep-ph/9512211.
- 28. A.D. Linde, Phys. Letters B 259(1–2), 38 (1991).
- 29. A. Linde, Phys. Rev. D 49(2), 748 (1994), arXiv:astro-ph/9307002.
- 30. R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D 68(10), id. 103514 (2003), https://journals.aps.org/prd/abstract/10.1103/PhysRevD.68.103514, arXiv:hep-ph/0308134.
- 31. J. Rocher and M. Sakellariadou, Phys. Rev. Letters 94(1), id. 011303 (2005), arXiv:hep-ph/0412143.
- 32. J. Yokoyama, Phys. Letters B 212(3), 273 (1988).
- 33. S. Sarangi and S.-H.H. Tye, Phys. Letters B 536(3–4), 185 (2002), arXiv:hep-th/0204074.
- 34. N.T. Jones, H. Stoica, and S.H.H. Tye, Phys. Letters B 563(1–2), 6 (2003), arXiv:hep-th/0303269.
- 35. P. Binétruy, G. Dvali, R. Kallosh, and A. Van Proeyen, Classical and Quantum Gravity 21(13), 3137 (2004), arXiv:hep-th/0402046.
- 36. A.-C. Davis, P. Brax, and C. van de Bruck, Philosoph. Transactions Roy. Soc. A: Math., Phys. and Engin. Sci. 366(1877), 2833 (2008), arXiv:0803.0424 [hep-th].
- 37. O.S. Sazhina, D. Scognamiglio, and M.V. Sazhin, European Phys. J. C 74, id. 2972 (2013), https://link.springer.com/article/10.1140/epjc/s10052-014-2972-6
- 38. O.S. Sazhina, D. Scognamiglio, M.V. Sazhin, and M. Capaccioli, Monthly Not. Roy. Astron. Soc. 485(2), 1876 (2019).
- 39. I.I. Bulygin, M.V. Sazhin, and O.S. Sazhina, European Phys. J. C 83(9), id. 844 (2023), https://link.springer.com/article/10.1140/epjc/s10052-023-11994-x
- 40. M. Safonova, I.I. Bulygin, O.S. Sazhina, M.V. Sazhin, P. Hasan, and F. Sutaria, Bull. Soc. Roy. Sci. de Liege 93(2), 790 (2024).
- 41. Z. Arzoumanian, P.T. Baker, H. Blumer, B. Becsy, at al., arXiv:2009.04496 [astro-ph.HE] (2021).
- 42. G. Agazie, A. Anumarlapudi, A.M. Archibald, Z. Arzoumanian, et al., arXiv:2306.16213 [astroph.HE] (2023).
- 43. H. Xiao, L. Dai, and M. McQuinn, arXiv:2206.13534 [astro-ph.CO] (2022).
- 44. H.Q. Leclere, P. Auclair, S. Babak, A. Chalumeau, et al., arXiv:2306.12234 [gr-qc](2023).
- 45. C. Hazard, H.C. Arp, and D.C. Morton, Nature 282(5736), 271 (1979).
- 46. H. Arp and C. Hazard, Astrophys. J. 240, 726 (1980).
- 47. J.R. Gott, III, Astrophys. J. 288, 422 (1985).
- 48. B. Paczynski, Astrophys. J. 301, 503 (1986).
- 49. E.L. Turner, D.P. Schneider, B.F. Burke, J.N. Hewitt, G.I. Langston, J.E. Gunn, C.R. Lawrence, and M. Schmidt, Nature 321(6066), 142 (1986).
- 50. D.P. Bennett and A. Stebbins, Nature 324, 392 (1986).
- 51. A.A. Stark, M. Dragovan, R.W. Wilson, J.R. Gott, III, Nature 322(6082), 805 (1986).
- 52. L. Bradley, B. Sipöcz, T. Robitaille, E. Tollerud, et al., astropy/photutils: 1.5.0. (2022), https://zenodo.org/records/6825092
- 53. K.M. Gorski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelman, arXiv:astro-ph/0409513 (2004).
- 54. Gravitationally Lensed Quasar Database (Doubles) (2019), https://research.ast.cam.ac.uk/lensedquasars/doubles.html
- 55. Gravitationally Lensed Quasar Database (Nearly Identical Quasar Pairs) (2019), https://research.ast.cam.ac.uk/lensedquasars/niqs.html
- 56. C. Lemon, T. Anguita, M. Auger, F. Courbin, et al., arXiv:2206.07714 [astro-ph.GA] (2022).
- 57. A. Schild, Phys. Rev. D 16(6), 1722 (1977).
- 58. D.V. Fursaev, Phys. Rev. D 103(12), id. 123526 (2021), arXiv:2104.04982 [gr-qc].