- PII
- S30345170S0004629925060027-1
- DOI
- 10.7868/S3034517025060027
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 102 / Issue number 6
- Pages
- 468-479
- Abstract
- The purpose of the work is to build a self-consistent gas-dynamic model of the accretion disk of a compact astrophysical object, taking into account viscosity. The matter falling on a compact object consists of proton gas, electrons, and radiation arising from the braking of a rotating gas at a speed comparable to light. Physical proton viscosity is not enough in the gas-dynamic accretion model with laminar flow. It is necessary to introduce the so-called turbulent viscosity, probably arising from the development of instabilities, to explain the loss of the disk angular momentum. With a quantitative mathematical model of gas dynamics, taking into account the generally accepted turbulent viscosity, we want to demonstrate a solution with such instability.
- Keywords
- нейтронная звезда аккреционый диск гамма всплеск консервативная конечно-разностная схема
- Date of publication
- 10.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 36
References
- 1. N.I. Shakura, Soviet Astron. 16, 756 (1973).
- 2. N.I. Shakura and R.A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
- 3. G.S. Bisnovatyi-Kogan and R.V. E. Lovelace, New Astron. Rev. 45(11–12), 663 (2001).
- 4. G.S. Bisnovatyi-Kogan, Relativistic Astrophysics and Physical Cosmology (Moscow: KRASAND, 2011) (in russian).
- 5. A.G. Aksenov and V.M. Chechetkin, Astron. Rep. 68(5), 438 (2024).
- 6. Ye. P. Velikhov, A. Yu. Lugovsky, S.I. Mukhin, Yu. P. Popov, and V.M. Chechetkin, Astron. Rep. 51(2), 154 (2007).
- 7. A. Yu. Lugovskii and V.M. Chechetkin, Astron. Rep. 56(2), 96 (2012).
- 8. S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects (New York: Wiley-Interscience, 1983).
- 9. K. Nomoto and M. Hashimoto, Phys. Rep. 163, 13 (1988).
- 10. A.G. Aksenov, A.A. Baranov, A.A. Filina, and V.M. Chechetkin, On possibility of nucleosynthesis during accretion on a compact star, KIAM Preprint No 77 (Moscow: ИПМ, 2024) (in russian), https://library.keldysh.ru/preprint.asp?id=2024-77
- 11. L.D. Landau and E.M. Lifshits, Fluid Mechanics. Course of Theoretical Physics (New York: Pergamon Press, 1987).
- 12. P.K. Raschewski, Riemannsche Geometrie und Tensoranalysis (Frankfurt am Main: Verlag Harri Deutsch, 1995).
- 13. G.V. Vereshchagin and A.G. Aksenov, Relativistic Kinetic Theory (Cambridge University Press, 2017).
- 14. A.G. Aksenov and V.M. Chechetkin, The Physics of Supernovae and Their Mathematical Models (World Scientific, 2024).
- 15. V.D. Shafranov, Rev. Plasma Physics 3, 1 (1967).
- 16. A.G. Aksenov, V.F. Tishkin, and V.M. Chechetkin, Math. Models Computer Simulations 11, 360 (2019).
- 17. Y.V. Artemova, G.S. Bisnovatyi-Kogan, I.V. Igumenshchev, and I.D. Novikov, 637(2), 968 (2006).
- 18. P. Colella and H.M. Glaz, J. Comput. Phys. 59, 264 (1985).
- 19. A.G. Aksenov, Comp. Math. and Math. Physics 55(10), 1752 (2015).
- 20. E.P. Kurbatov, D.V. Bisikalo, and P.V. Kaygorodov, Physics Uspekhi 57(8), 787 (2014).
- 21. N.I. Shakura and R.A. Sunyaev, Monthly Not. Roy. Astron. Soc. 175, 613 (1976).
- 22. M.R. McKee, Astron. and Astrophys. 235(1–2), 521 (1990).
- 23. L. Titarchuk and I. Kalashnikov, Astron. and Astrophys. 674, id. A168 (2023).