RAS PhysicsАстрономический журнал Astronomy Reports

  • ISSN (Print) 0004-6299
  • ISSN (Online) 3034-5170

GAS-DYNAMIC INSTABILITIES IN A TWO-DIMENSIONAL BOUNDARY LAYER DURING ACCRETION

PII
S30345170S0004629925060027-1
DOI
10.7868/S3034517025060027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 102 / Issue number 6
Pages
468-479
Abstract
The purpose of the work is to build a self-consistent gas-dynamic model of the accretion disk of a compact astrophysical object, taking into account viscosity. The matter falling on a compact object consists of proton gas, electrons, and radiation arising from the braking of a rotating gas at a speed comparable to light. Physical proton viscosity is not enough in the gas-dynamic accretion model with laminar flow. It is necessary to introduce the so-called turbulent viscosity, probably arising from the development of instabilities, to explain the loss of the disk angular momentum. With a quantitative mathematical model of gas dynamics, taking into account the generally accepted turbulent viscosity, we want to demonstrate a solution with such instability.
Keywords
нейтронная звезда аккреционый диск гамма всплеск консервативная конечно-разностная схема
Date of publication
10.03.2025
Year of publication
2025
Number of purchasers
0
Views
36

References

  1. 1. N.I. Shakura, Soviet Astron. 16, 756 (1973).
  2. 2. N.I. Shakura and R.A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
  3. 3. G.S. Bisnovatyi-Kogan and R.V. E. Lovelace, New Astron. Rev. 45(11–12), 663 (2001).
  4. 4. G.S. Bisnovatyi-Kogan, Relativistic Astrophysics and Physical Cosmology (Moscow: KRASAND, 2011) (in russian).
  5. 5. A.G. Aksenov and V.M. Chechetkin, Astron. Rep. 68(5), 438 (2024).
  6. 6. Ye. P. Velikhov, A. Yu. Lugovsky, S.I. Mukhin, Yu. P. Popov, and V.M. Chechetkin, Astron. Rep. 51(2), 154 (2007).
  7. 7. A. Yu. Lugovskii and V.M. Chechetkin, Astron. Rep. 56(2), 96 (2012).
  8. 8. S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects (New York: Wiley-Interscience, 1983).
  9. 9. K. Nomoto and M. Hashimoto, Phys. Rep. 163, 13 (1988).
  10. 10. A.G. Aksenov, A.A. Baranov, A.A. Filina, and V.M. Chechetkin, On possibility of nucleosynthesis during accretion on a compact star, KIAM Preprint No 77 (Moscow: ИПМ, 2024) (in russian), https://library.keldysh.ru/preprint.asp?id=2024-77
  11. 11. L.D. Landau and E.M. Lifshits, Fluid Mechanics. Course of Theoretical Physics (New York: Pergamon Press, 1987).
  12. 12. P.K. Raschewski, Riemannsche Geometrie und Tensoranalysis (Frankfurt am Main: Verlag Harri Deutsch, 1995).
  13. 13. G.V. Vereshchagin and A.G. Aksenov, Relativistic Kinetic Theory (Cambridge University Press, 2017).
  14. 14. A.G. Aksenov and V.M. Chechetkin, The Physics of Supernovae and Their Mathematical Models (World Scientific, 2024).
  15. 15. V.D. Shafranov, Rev. Plasma Physics 3, 1 (1967).
  16. 16. A.G. Aksenov, V.F. Tishkin, and V.M. Chechetkin, Math. Models Computer Simulations 11, 360 (2019).
  17. 17. Y.V. Artemova, G.S. Bisnovatyi-Kogan, I.V. Igumenshchev, and I.D. Novikov, 637(2), 968 (2006).
  18. 18. P. Colella and H.M. Glaz, J. Comput. Phys. 59, 264 (1985).
  19. 19. A.G. Aksenov, Comp. Math. and Math. Physics 55(10), 1752 (2015).
  20. 20. E.P. Kurbatov, D.V. Bisikalo, and P.V. Kaygorodov, Physics Uspekhi 57(8), 787 (2014).
  21. 21. N.I. Shakura and R.A. Sunyaev, Monthly Not. Roy. Astron. Soc. 175, 613 (1976).
  22. 22. M.R. McKee, Astron. and Astrophys. 235(1–2), 521 (1990).
  23. 23. L. Titarchuk and I. Kalashnikov, Astron. and Astrophys. 674, id. A168 (2023).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library