RAS PhysicsАстрономический журнал Astronomy Reports

  • ISSN (Print) 0004-6299
  • ISSN (Online) 3034-5170

AVERAGE TEMPORAL PROFILES OF SOLAR FLARE MICROWAVE EMISSION: MORPHOLOGY AND APPLICATION

PII
S30345170S0004629925080078-1
DOI
10.7868/S3034517025080078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 102 / Issue number 8
Pages
728-742
Abstract
Both solar and stellar average time profiles of emission demonstrate general laws of evolution of such complex and diverse phenomenon as flare. Empirically obtained average profiles for events with simple dynamic allow us both to analyse the emission mechanisms of solar and stellar flares and to help to divide complex events into discrete acts of energy release. Microwave emission is of particular interest, since it can reflect the precipitation dynamics of accelerated electrons. For the reconstruction of average time profiles, 116 events were selected from the Siberian Radioheliograph observations in the 3–24 GHz range. These profiles demonstrated a simple time structure and a broadband gyrosynchrotron spectrum of non-thermal nature. The wide spectral range allowed to divide emission into emission of optically thick and optically thin sources. The time profiles that describe the emission from different regions of the flare loop were summed within the respective spectral band, after which for each event, normalization and time scaling were applied. The average time profiles were obtained as the median value for each time bin (step). As a result, it was shown that the microwave average time profiles for the microwave optically thick and thin sources are identical for a solar flare with simple dynamics. This indicates the dominance of accelerated electron precipitation processes in the emission of such events. Also, the dominance of non-thermal processes for this type of event is confirmed by a comparison with the results of a solar flare dynamics modelling in the 304 Å line obtained in works of other authors and an analysis of the dynamics of microwave emission during the decay phase. Analytical functions were obtained that describe the rise and decay phases of microwave emission of a solar flare. The use of analytical functions in combination with the average time profile for the analysis of the 03 February 2022 event showed the possibility of using this method to separate the acts of energy release associated with the precipitation of accelerated electrons. The obtained average time profiles, as well as analytical functions describing the behaviour of simple solar flare microwave emission, can be used to analyse both the emission of solar events in the microwave range and to study the processes occurring during stellar flares.
Keywords
солнечные и звездные вспышки механизм генерации излучения микроволновое излучение временны́е профили вспышки
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
41

References

  1. 1. J. Jakimiec, B. Sylwester, J. Sylwester, S. Serio, G. Peres, and F. Reale, Astron. and Astrophys. 253(1), 269 (1992).
  2. 2. A.O. Benz, Liv. Rev. Solar Phys. 14(1), id. 2 (2017).
  3. 3. V.M. Nakariakov, C. Foullon, E. Verwichte, and N.P. Young, Astron. and Astrophys. 452(1), 343 (2006).
  4. 4. R.A. Sych, M. Karlický, A.T. Altyntsev, J. Dudk, and L.K. Kashapova, Astron. and Astrophys. 577, id. A43 (2015).
  5. 5. J.R.A. Davenport, S.L. Hawley, L. Hebb, J.P. Wisniewski, et al., 797(2), id. 122 (2014).
  6. 6. L.K. Kashapova, D.Y. Kolotkov, E.G. Kupriyanova, A.V. Kudriavtseva, C. Tan, and H.A. S. Reid, Solar Phys. 297(12), id. 152 (2022).
  7. 7. J.R. Lemen, A.M. Title, D.J. Akin, P.F. Boerner, et al., Solar Phys. 275(1–2), 17 (2012).
  8. 8. J.C. Allred, S.L. Hawley, W.P. Abbett, and M. Carlsson, 644(1), 484 (2006).
  9. 9. И.Д. Мотык, Л.К. Кашапова, Астрон. журн. 99(11), 1008 (2022).
  10. 10. А.Т. Алтынцев, С.В. Лесовой, М.В. Глоба, А.В. Губин, и др., Солнечно-земная физика 6(2), 37 (2020).
  11. 11. G.A. Dulk, Ann. Rev. Astron. Astrophys. 23, 169 (1985).
  12. 12. T.S. Bastian, A.O. Benz, and D.E. Gary, Ann. Rev. Astron. Astrophys. 36, 131 (1998).
  13. 13. G.M. Nita, G.D. Fleishman and D.E. Gary, Astrophys. J. 689(1), 545 (2008).
  14. 14. S.V. Lesovoi and V.S. Kobets, Solar-Terr. Phys. 3(1), 19 (2017).
  15. 15. D.V. Rozhkova, L.K. Kashapova, and A.V. Gubin. Modern astronomy: from the Early Universe to exoplanets and black holes, (VAK2024), held 25–31 July, 2024 in Nizhny Arkhyz, Russian Federation, p. 1129 (2024).
  16. 16. L.K. Kashapova, A.-M. Broomhall, A.I. Larionova, E.G. Kupriyanova, and I.D. Motyk, Monthly Not. Roy. Astron. Soc. 502, 3922 (2021).
  17. 17. R. Sharma, M. Battaglia, Y. Luo, B. Chen, and S. Yu, Astrophys. J. 904, id. 94 (2020).
  18. 18. L.K. Kashapova, E.G. Kupriyanova, Z. Xu, H.A. S. Reid, and D.Y. Kolotkov, Astron. and Astrophys. 642, id. A195 (2020).
  19. 19. A.F. Kowalski, S.L. Hawley, J.P. Wisniewski, R.A. Osten, E.J. Hilton, J.A. Holtzman, S.J. Schmidt, and J.R.A. Davenport, Astrophys. J. Suppl. 207(1), id. 15 (2013).
  20. 20. W.J. Borucki, D. Koch, G. Basri, N. Batalha, et al., Science 327(5968), 977 (2010).
  21. 21. M.J. Aschwanden and D. Tsiklauri, Astrophys. J. Suppl. 185(1), 171 (2009).
  22. 22. P.J. Cargill, J.T. Mariska and S.K. Antiochos, 439, 1034 (1995).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library