RAS PhysicsАстрономический журнал Astronomy Reports

  • ISSN (Print) 0004-6299
  • ISSN (Online) 3034-5170

PROBLEMS AND METHODS OF MODERN SEARCH FOR COSMIC STRINGS

PII
S30345170S0004629925030079-1
DOI
10.7868/S3034517025030079
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 102 / Issue number 3
Pages
213-228
Abstract
In this paper, the theoretical and observational problems of the search for cosmic strings (CS) by methods of modern astrophysics are discussed, and new possibilities for further observational search for CS are proposed and justified. In recent works by the authors, it was shown for the first time that taking into account the geometry of the CS (tilt and bend) cardinally affects one of the main observational methods of searching for CS: searching for chains of images of galaxies that should be formed due to the effect of gravitational lensing of background galaxies on the CS. Further, these theoretical developments were applied to the analysis of observational data of the double galaxy SDSS J110429.61+233150.3, previously found in the field of the assumed CS (CSc-1), identified, in turn, by the analysis of the CMB anisotropy. Based on these long-term studies, this paper for the first time identifies the fundamental problems of approximate theoretical models, within which the evolution of both CS networks and single CS is traditionally considered, and also for the first time justifies the rejection of the traditional search for extended chains of gravitational-lens pairs. In this paper, a new detailed strategy for searching for CS is proposed by identifying and analyzing the characteristic clustering of gravitational-lens pairs. The strategy is proposed using the example of the analysis of gravitational-lens pairs in the CSc-1 region, and the requirements for future observations are indicated. Arguments are also given that allow for a change in the linear density of CS in a wide range, arguments are given that “heavy” CS do not contradict modern observational data, including on the CMB anisotropy and the gravitational-wave background. A strategy for the systematic analysis of binary quasars (having a gravitationally lensed nature and an unidentified lens object) as lensed on CS is discussed.
Keywords
космология космические струны гравитационное линзирование
Date of publication
14.10.2024
Year of publication
2024
Number of purchasers
0
Views
52

References

  1. 1. T.W.B. Kibble, J. Physics A: Mathematical and General 9(8), 1387 (1976).
  2. 2. D.D. Sokolov and A.A. Starobinsky, Soviet Physics Doklady 22 312 (1977).
  3. 3. M.B. Hindmarsh and T.W.B. Kibble, Reports Progress Phys. 58(5), 477 (1995), arXiv:hepph/9411342.
  4. 4. Ya.B. Zeldovich, Monthly Not. Roy. Astron. Soc. 192, 663 (1980).
  5. 5. A. Vilenkin, Phys. Rev. D 23(4), 852 (1981).
  6. 6. A. Vilenkin, Astrophys. J. Letter 282, L51 (1984).
  7. 7. J.-P. Uzan and F. Bernardeau, Phys. Rev. D 63(2), id. 023004 (2000).
  8. 8. A.A. de Laix and T. Vachaspati, Phys. Rev. D 54(8), 4780 (1996).
  9. 9. D.P. Bennett and F.R. Bouchet, Phys. Rev. D 41(8), 2408 (1990).
  10. 10. B. Allen and E.P.S. Shellard, Phys. Rev. Letters 64(2), 119 (1990).
  11. 11. C.J.A.P. Martins and E.P.S. Shellard, Phys. Rev. D 73(4), id. 043515 (2005), arXiv:astro-ph/0511792.
  12. 12. C. Ringeval, M. Sakellariadou, and F.R. Bouchet, J. Cosmology and Astroparticle Phys. 0702, id. 023 (2007), arXiv:astro-ph/0511646.
  13. 13. A. Zakharov, General Relativ. and Gravit. 42(9), 2301 (2010).
  14. 14. D.A. Kirzhnits and A.D. Linde, Phys. Letters B 42(4), 471 (1972).
  15. 15. I.Yu. Kobsarev, L.B. Okun, and Ya. B. Zeldovich, Phys. Letters B 50(3), 340 (1974).
  16. 16. T.W.B. Kibble, J. Physics A: Mathematical and General 9(3), 1387 (1976).
  17. 17. E. Witten, Phys. Letters B 153(4–5), 243 (1985).
  18. 18. J. Polchinski, in The New Cosmology: Conference on Strings and Cosmology; AIP Conf. Proc. 743, 331 (2004), arXiv:hep-th/0410082.
  19. 19. M. Sakellariadou, Nuclear Phys. B Proc. Suppl. 192, 68 (2009), arXiv:0902.0569 [hep-th].
  20. 20. E.J. Copeland and T.W.B. Kibble, Proc. Royal Soc. A: Math., Phys. and Engineering Sci. 466(2115), 623 (2010), arXiv:0911.1345 [hep-th].
  21. 21. M.R. Anderson, The Mathematical Theory of Cosmic Strings. Cosmic Strings in the Wire Approximation (Boca Raton: Taylor and Francis, 2002).
  22. 22. B. Paczyński, Nature 319(6054), 567 (1986).
  23. 23. Q. Shafi and A. Vilenkin, Phys. Rev. D 29(8), 1870 (1984), https://link.aps.org/doi/10.1103/PhysRevD.29.1870
  24. 24. E.T. Vishniac, K.A. Olive, and D. Seckel, Nuclear Phys. B 289, 717 (1987).
  25. 25. L.A. Kofman and A.D. Linde, Nuclear Phys. B 282, 555 (1987).
  26. 26. J. Yokoyama, Phys. Rev. Letters 63(7), 712 (1989).
  27. 27. K. Freese, T. Gherghetta, and H. Umeda, Phys. Rev. D 54(10), 6083 (1996), arXiv:hep-ph/9512211.
  28. 28. A.D. Linde, Phys. Letters B 259(1–2), 38 (1991).
  29. 29. A. Linde, Phys. Rev. D 49(2), 748 (1994), arXiv:astro-ph/9307002.
  30. 30. R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D 68(10), id. 103514 (2003), https://journals.aps.org/prd/abstract/10.1103/PhysRevD.68.103514, arXiv:hep-ph/0308134.
  31. 31. J. Rocher and M. Sakellariadou, Phys. Rev. Letters 94(1), id. 011303 (2005), arXiv:hep-ph/0412143.
  32. 32. J. Yokoyama, Phys. Letters B 212(3), 273 (1988).
  33. 33. S. Sarangi and S.-H.H. Tye, Phys. Letters B 536(3–4), 185 (2002), arXiv:hep-th/0204074.
  34. 34. N.T. Jones, H. Stoica, and S.H.H. Tye, Phys. Letters B 563(1–2), 6 (2003), arXiv:hep-th/0303269.
  35. 35. P. Binétruy, G. Dvali, R. Kallosh, and A. Van Proeyen, Classical and Quantum Gravity 21(13), 3137 (2004), arXiv:hep-th/0402046.
  36. 36. A.-C. Davis, P. Brax, and C. van de Bruck, Philosoph. Transactions Roy. Soc. A: Math., Phys. and Engin. Sci. 366(1877), 2833 (2008), arXiv:0803.0424 [hep-th].
  37. 37. O.S. Sazhina, D. Scognamiglio, and M.V. Sazhin, European Phys. J. C 74, id. 2972 (2013), https://link.springer.com/article/10.1140/epjc/s10052-014-2972-6
  38. 38. O.S. Sazhina, D. Scognamiglio, M.V. Sazhin, and M. Capaccioli, Monthly Not. Roy. Astron. Soc. 485(2), 1876 (2019).
  39. 39. I.I. Bulygin, M.V. Sazhin, and O.S. Sazhina, European Phys. J. C 83(9), id. 844 (2023), https://link.springer.com/article/10.1140/epjc/s10052-023-11994-x
  40. 40. M. Safonova, I.I. Bulygin, O.S. Sazhina, M.V. Sazhin, P. Hasan, and F. Sutaria, Bull. Soc. Roy. Sci. de Liege 93(2), 790 (2024).
  41. 41. Z. Arzoumanian, P.T. Baker, H. Blumer, B. Becsy, at al., arXiv:2009.04496 [astro-ph.HE] (2021).
  42. 42. G. Agazie, A. Anumarlapudi, A.M. Archibald, Z. Arzoumanian, et al., arXiv:2306.16213 [astroph.HE] (2023).
  43. 43. H. Xiao, L. Dai, and M. McQuinn, arXiv:2206.13534 [astro-ph.CO] (2022).
  44. 44. H.Q. Leclere, P. Auclair, S. Babak, A. Chalumeau, et al., arXiv:2306.12234 [gr-qc](2023).
  45. 45. C. Hazard, H.C. Arp, and D.C. Morton, Nature 282(5736), 271 (1979).
  46. 46. H. Arp and C. Hazard, Astrophys. J. 240, 726 (1980).
  47. 47. J.R. Gott, III, Astrophys. J. 288, 422 (1985).
  48. 48. B. Paczynski, Astrophys. J. 301, 503 (1986).
  49. 49. E.L. Turner, D.P. Schneider, B.F. Burke, J.N. Hewitt, G.I. Langston, J.E. Gunn, C.R. Lawrence, and M. Schmidt, Nature 321(6066), 142 (1986).
  50. 50. D.P. Bennett and A. Stebbins, Nature 324, 392 (1986).
  51. 51. A.A. Stark, M. Dragovan, R.W. Wilson, J.R. Gott, III, Nature 322(6082), 805 (1986).
  52. 52. L. Bradley, B. Sipöcz, T. Robitaille, E. Tollerud, et al., astropy/photutils: 1.5.0. (2022), https://zenodo.org/records/6825092
  53. 53. K.M. Gorski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelman, arXiv:astro-ph/0409513 (2004).
  54. 54. Gravitationally Lensed Quasar Database (Doubles) (2019), https://research.ast.cam.ac.uk/lensedquasars/doubles.html
  55. 55. Gravitationally Lensed Quasar Database (Nearly Identical Quasar Pairs) (2019), https://research.ast.cam.ac.uk/lensedquasars/niqs.html
  56. 56. C. Lemon, T. Anguita, M. Auger, F. Courbin, et al., arXiv:2206.07714 [astro-ph.GA] (2022).
  57. 57. A. Schild, Phys. Rev. D 16(6), 1722 (1977).
  58. 58. D.V. Fursaev, Phys. Rev. D 103(12), id. 123526 (2021), arXiv:2104.04982 [gr-qc].
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library