RAS PhysicsАстрономический журнал Astronomy Reports

  • ISSN (Print) 0004-6299
  • ISSN (Online) 3034-5170

ON THE INSTABILITIES OF SMALL-SCALE MODES OF OSCILLATIONS AGAINST THE BACKGROUND OF A COLLAPSING GALAXY MODEL

PII
S30345170S0004629925050015-1
DOI
10.7868/S3034517025050015
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 102 / Issue number 5
Pages
357-369
Abstract
In this work, the gravitational instability of small-scale perturbations with an azimuthal wave number m = 2 in disk-like self-gravitating systems is considered. Calculations of horizontal small-scale oscillation modes (m;N) = (2; 10) and (2; 20) against the background of a nonlinearly non-equilibrium anisotropic model of a self-gravitating disk are performed. Critical diagrams of the relationship between the virial parameter and the degree of rotation for these modes are constructed, and the increments of instability for different values of the rotation parameter are calculated. The results show that the instability for the oscillation mode (2; 10) begins at a virial parameter value of (2T/|U|) ≈ 0.217 at Ω = 0 and reaches 0.413 at Ω = 1. For the oscillation mode (2; 20), the instability starts at a virial parameter value of (2T/|U|) ≈ 0.128 at Ω = 0 and reaches 0.146 at Ω = 1. It is found that with an increase in the rotation parameter, the instability region also increases, while with an increase in the degree of small-scale structure, the instability region significantly decreases. The work is partially based on a talk presented at the Modern Stellar Astronomy 2024 conference.
Keywords
самогравитирующие системы гравитационная неустойчивость нелинейно нестационарные модели диска
Date of publication
11.11.2024
Year of publication
2024
Number of purchasers
0
Views
53

References

  1. 1. A.J. Kalnajs, Observatory 93, 39 (1973).
  2. 2. J. Binney and S. Tremaine, Galactic Dynamics: Second Edition (Princeton, NJ USA: Princeton University Press, 2008).
  3. 3. A.M. Fridman, V.L. Polyachenko, translated by A.B. Aries, and I.N. Poliakoff, Physics of gravitating systems. II. Nonlinear collective processes: nonlinear waves, solitons, collisionless shocks, turbulence. Astrophysical applications (New York-Berlin-Heidelberg-Tokyo: SpringerVerlag, 1984).
  4. 4. A.M. Fridman and A.V Khoprskov, Physics of Galactic Disks (UK: Cambridge International Science Publishing, 2013).
  5. 5. С.Н. Нуритдинов, Нелинейные модели и физика неустойчивости неравновесных бесстолкно-вительных самогравитирующих систем, дисс. докторафиз.-мат. наук, 01.03.02, Ташкент, 1993, 362 с.
  6. 6. K.T. Mirtadjieva, S.N. Nuritdinov, J.K. Ruzibaev, andM. Khalid, Astrophysics 54(2), 184 (2011).
  7. 7. K.T. Mirtadjieva and S.N. Nuritdinov, Astrophysics 55(4), 551 (2012).
  8. 8. S.N. Nuritdinov, K.T. Mirtadjieva, and M. Sultana, Astrophysics 51(3), 410 (2008).
  9. 9. K.T. Mirtadjieva andK.A. Mannapova, Gravitation and Cosmology 27(3), 212 (2021), arXiv:2012.13597 [astro-ph.GA].
  10. 10. K.T. Mirtadjieva, S.N. Nuritdinov, K.A. Mannapova, and T.O. Sadibekova, Astrophysics 65(2), 247 (2022).
  11. 11. K.T. Mirtadjieva andS.N. Nuritdinov, Astron. Rep. 67(5), 502 (2023).
  12. 12. K.T. Mirtadjieva, Gravitation and Cosmology 15(3), 278 (2009).
  13. 13. K.T. Mirtadjieva, Gravitation and Cosmology 18(1), 6 (2012).
  14. 14. J. Ganiev and S. Nuritdinov, Open Astronomy 31(1), 92 (2022).
  15. 15. J. Ganiev and S. Nuritdinov, Uzbek J. Physics 23(1) (2021), http://ufj.uz/index.php/ufj/article/view/233.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library