- PII
- S30345170S0004629925060015-1
- DOI
- 10.7868/S3034517025060015
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 102 / Issue number 6
- Pages
- 449-467
- Abstract
- Within the framework of entropic cosmology, several variants of the model of the Universe evolution based on the Friedman-Robertson-Walker (FRW) equation system are considered, reconstructed taking into account a new modification of the Kaniadakis entropy at the cosmological horizon. The modification is carried out by replacing the Bekenstein-Hocking entropy in the dual expression of the Kaniadakis entropy (in which all states have the same probability) by the Barrow entropy associated with the transformation of the horizon of the Universe surface due to quantum-gravitational effects. As a result, various cosmological scenarios of the accelerated expansion of the Universe on the basis of the reconstructed FRW equations containing an additional force term depending on two free parameters of the model are obtained: the deformation parameter κ of the Kaniadakis entropy, which is responsible for taking into account the peculiarities of space-time, due to the long-range nature of gravitation, and the deformation parameter δ of the Barrow entropy, which is responsible for the fractal structure of the cosmological horizon surface, associated with the action of gravitational-quantum effects.
- Keywords
- энтропийная космология модифицированная дуальная энтропия Каниадакиса ускоренное расширение Вселенной
- Date of publication
- 10.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 58
References
- 1. E.N. Saridakis et al., Springer, arXiv:2105.12582v2 [gr-qc] (2023).
- 2. M. Ishak, Living Rev. Rel. 22, arXiv:1806.10122v2 [astro-ph.CO] (2019).
- 3. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1975).
- 4. S. Hawking, Commun. Math. Phys. 43, 199 (1975).
- 5. R. Bousso, Reviews of modern physics 74, 825 (2002).
- 6. E. Verlinde, J. High Energy Phys. 4, 1 (2011).
- 7. L. Susskind, J. Math. Phys. 36, 6377 (1995).
- 8. D.A. Easson, P.H. Frampton and G.F. Smoot, Phys. Lett. B 696, 273 (2011).
- 9. R.G. Cai, L.M. Cao and N. Ohta, Phys. Rev. D 81, 061501 (2010).
- 10. S. Basilakos, D. Polarski and J. Sola, Phys. Rev. D 86, 043010 (2012).
- 11. T. Qiu, E.N. Saridakis, Phys. Rev. D 85, 043504 (2012).
- 12. G.G. Luciano, Eur. Phys. J. C 82, 314 (2022).
- 13. A. Sheykhi, Phys. Lett. B 850, id. 138495 (2024).
- 14. H. Moradpour, A.H. Ziaie and M. Kord Zangeneh, Eur. Phys. J. C 80, 732 (2020).
- 15. H. Moradpour, S. Sheykhi, C. Corda and I.G. Salako, Physics Letters B 783, 82 (2018).
- 16. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 738 (1977).
- 17. W. de Sitter, Proc. Roy. Acad. Sci. (Amsterdam) 19, 1217 (1917).
- 18. S. Nojiri and S.D. Odintsov, Phys. Rept. 505, 59 [arXiv:1011.0544 [gr-qc]] (2011).
- 19. A. Renyi, In: Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability (University California Press, Berkeley, 1, 547, 1961).
- 20. C. Tsallis, L.J. L. Cirto, Eur. Phys. J. C 73, 2487 (2013).
- 21. J.D. Barrow, Phys. Lett. B 808,135643 (2020).
- 22. B.D. Sharma, D.P. Mittal, J. Comb. Inform. & Syst. Sci. 2, 122 (1975).
- 23. G. Kaniadakis, Phys. Rev. E 66, 056125 (2002).
- 24. S. Ghaffari et al., Mod. Phys. Lett. A 35, 1950341 (2020).
- 25. T. S. Biro, V.G. Czinner, Phys. Lett. B 726, 861 (2013).
- 26. V.G. Czinner, H. Iguchi, Phys. Lett. B 752, 306 (2016).
- 27. F.K. Anagnostopoulos, S. Basilakos and E.N. Saridakis, Eur. Phys. J. C 80, 826 (2020).
- 28. E.N. Saridakis, J. Cosmol. and Astroparticle Phys., Issue 07, article id. 0311 (2020).
- 29. E.M. C. Abreu, J.A. Neto, Europhysics Letters 133, Issue 4, id. 49001, arXiv:2107.04869 v2 [gr-qc] (2021).
- 30. A. Jawad, Z. Abideen and S. Rani, Mod. Phys. Lett. A 38, 2350037 (2023).
- 31. Y.-F. Cai, E. Saridakis, Phys. Lett. B 697, 280 (2011).
- 32. E.M. C. Abreu, J.A. Neto, A.C. R. Mendes and A. Bonilla, Europhys. Lett. 121, 45002 (2018).
- 33. T. Padmanabhan, Phys. Rev. D 81, 124040 (2010).
- 34. A. Sheykhi, Phys. Lett. B 785, 118 (2018).
- 35. A. Sheykhi, Phys. Rev. D 103,123503 (2021).
- 36. F.K. Anagnostopoulos, S. Basilakos, G. Kofinas and V. Zarikas, JCAP 053, arXiv:1806.10580 (2019).
- 37. S.A. Hayward, R.D. Criscienzo, M. Nadalini, L. Vanzo and S. Zerbini, arXiv:0806.0014v2 [gr-qc] (2009).
- 38. O. Farooq, F.R. Madiyar, S. Crandall and B. Ratra, Astrophys. J. 835, 26 (2017).
- 39. Y. Masnep, K. Topu, Дж. Умер, Гравитация. Том 2 (Изд-во "Мир", 1977).
- 40. J. Sola, J. Phys. Conf. Ser. 453, 012015 (2013).
- 41. B. Ryden, Introduction to Cosmology (Cambridge University Press, 2017).
- 42. M. Akbar, R.G. Cai, Phys. Lett. B 635, 7 (2006).
- 43. A. Sheykhi, B. Wang, Phys. Lett. B 678, 434 (2009).
- 44. N. Tamanini, Phys. Rev. D 92, 043524 (2015).
- 45. B. Hu, Y. Ling, Phys. Rev. D 73, 123510 (2006).
- 46. A.V. Kolesnichenko, M. Ya. Marov, Astronomy Reports 66, 786 (2022).
- 47. J. Maddox, Nature 365, 103 (1993).
- 48. S. Das, S. Shankaranarayanan, Phys. Rev. D 73, 121701(R) (2006).
- 49. G. Hooft, arxiv.org/abs/gr-qc/9310026 (2009).
- 50. S. Jalalzadeh, F.R. da Silva and P.V. Moniz, Eur. Phys. J. 81, 632 (2021).
- 51. G. Leon, J. Magana, A. Hernández-Almada, M.A. García-Aspetita, T. Verdugo and V. Motta, JCAP 2012, id. 032P (2021).
- 52. J.D. Barrow, S. Basilakos and E.N. Saridakis, Phys. Lett. B 815, 136134 (2021).
- 53. S. Nojiri, S.D. Odintsov, E.N. Saridakis and R. Myrzakulov, Nucl. Phys. B 950, 114850 (2020).
- 54. S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Phys. Rept. 692 [arXiv:1705.11098 [gr-qc]] (2017).
- 55. S. Basilakos, M. Plionis and J. Sola, Phys. Rev. D 80, 083511 (2009).
- 56. T. Padmanabhan, S.M. Chitre, Phys. Lett. A 120, 433 (1987).
- 57. B. Li, J. Barrow, Phys. Rev. D 79, id. 103521 (2009).
- 58. O. Gron, Astrophys. and Space Sci. 173, 191(1990).
- 59. E.M. C. Abreu, J.A. Neto, arXiv:2009.05012 [gr-qc] (2020).
- 60. A. Sayahian Jahromi, S.A. Moosavi, H. Moradpour, J.P. Morais Greça, I.P. Lobo, I.G. Salako and A. Jawad, Phys. Lett. B 780, 21 (2018).
- 61. E.M. C. Abreu, J.A. Neto, A.C. R. Mendes and A. Bonilla, EPL 121, 45002 [arXiv:1711.06513] (2018).
- 62. A. Sheykhi, arXiv:2302.13012 (2024)
- 63. A. Lymperis, S. Basilakos, E.N. Saridakis, Eur. Phys. J. C 81, 1037 (2021).
- 64. A. Salehi, arXiv:2309.15956 (2023).
- 65. N. Drepanova, A. Lymperish, E.N. Saridakis, and K. Yesmakhanovae, Eur. Phys. J. C 82, 449 (2022).
- 66. A. Hernandez-Almada, Monthly Not. Roy. Astron. Soc. 512, 5122 (2022).
- 67. E.M. C. Abreu, J.A. Neto, E.M. Barbosa and R.C. Nunes, Int. J. Mod. Phys. A 32, no. 05, 1750028, [arXiv:1701.06898] (2017).
- 68. E.M. C. Abreu, J.A. Neto, A.C. R. Mendes and R.M. de Paula, arXiv:1808.01891, (2019).
- 69. C. Beck, Eur. Phys. J. A 40, 267 (2009).
- 70. G. Kaniadakis, Phys. Rev. E 66, 056125, [arXiv:cond-mat/0210467] (2002).
- 71. G. Kaniadakis, Phys. Rev. E 72, 036108, [arXiv:cond-mat/0507311] (2005).
- 72. A.B. Колесниченко, Статистическая механика и термодинамика Технике найденных систем. Введение в теорию и приложения (M.: Ленаид, Синергетика: от прошлого к будущему, № 87, 2019).
- 73. N. Komatsu, Eur. Phys. J. C 77, 229 (2017).
- 74. N. Aghanim et al., Astron. and Astrophys. 641, A6 [erratum: Astron. Astrophys. 652, C4 (2021)] [arXiv:1807.06209] (2020).
- 75. C. Tsallis, Entropy 22, 17 (2020).
- 76. S. Nojiri, S.D. Odintsov and T. Paul, Phys. Lett. B 831, arXiv:2205.08876 [gr-qc]] (2022).
- 77. S. Nojiri, S.D. Odintsov and V. Faraoni, Phys. Rev. D 105 [arXiv:2201.02424 [gr-qc]] (2022).
- 78. S. Nojiri, S.D. Odintsov and T. Paul, Universe 10 [arXiv:2409.01090 [gr-qc]] (2024).
- 79. S.D. Odintsov, S. D'Onofrio and T. Paul, Phys. Dark Univ. 42 [arXiv:2306.15225 [gr-qc]] (2023).
- 80. S.D. Odintsov, S. D'Onofrio and T. Paul, Phys. Lett. B 847 (2023).
- 81. S.D. Odintsov, S. D'Onofrio and T. Paul, Symmetry 13 (2021).
- 82. S. Nojiri, S.D. Odintsov and T. Paul, Phys. Lett. B 835 (2022).
- 83. S. Nojiri, S.D. Odintsov, Phys. Lett. B 845 (2023).